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The MTF based on the double-weighted Cu-C1 vector 
gave the correct position of the Cu atom and the 
trivial peak at ( rc~-rc~) /2  as top peaks. 

References 
ALDEN, R. m., STOUT, G. H., KRAUT, J. & HIGH, D. F. (1964). 

Acta Cryst. 17, 109-121. 
EGERT, E. & SHELDRICK, G. M. (1985). Acta Crysr A41,262-268. 
HIGH, D. F. & KRAUT, J. (1966). Acta Crysr 21, 88-96. 
HUBBARD, C. R., BABICH, M. W. & JACOBSON, R. A. (1977). A 

PL/1 Program System for Generalized Patterson Superposition. 
Ames Laboratory-ERDA. Iowa State Univ., Ames, USA. 

JACOBSON, R. A. & BECKMAN, D. E. (1979). Acta Cryst. A35, 
339-340. 

KETTMANN, V., PAVELg]iK, F. & RYB,AR, A. (1987). In prepar- 
ation. 

KIM, S. H., JEFFREY, G. A., ROSENSTEIN, R. D. & CORFIELD, 
P. W. R. (1967). Acta Crfisr 22, 733-743. 

LUGER, P. & FUCHS, J. (1986). Acta Cryst. A42, 380-386. 
PAVEL(~IK, F. (1986). J. Appl. Cryst. 19, 488-491. 
PAVEL~iK, F. & HAVET:I'A, K. (1988). In preparation. 
PAVEL(~iK, F., 7.EMLIt~KA, M., KETTMANN, V. & KRATSMAR- 

SMOGROVl(~, J. (1987). Chem. Pap., 41,433-440. 
RABINOW1TZ, I. N. & KRAUT, J. (1964). Acta Crysr 17, 159- 

168. 
SHELDRICK, G. M. (1985a). In Crystallographic Computing 3, 

edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, 
pp. 175-189. Oxford Univ. Press. 

SHELDRICK, G. M. (1985b). J. Mol. Strucr 130, 9-16. 
SIMPSON, P. G., DOBROTT, R. D. & LIPSCOMB, W. N. (1965). 

Acta Cryst. 18, 169-179. 
TERWlLLIGER, T. C., KIM, S.-H. & EISENBERG, D. (1987). Acta 

Crysr A43, 1-5. 
ULIC'KA, L., PAVELCiK, F. & HUML, K. (1987). Acta Crysr C43, 

2266-2268. 
VRABEL, V., PAVELg]IK, F., KELLO, E., MIERTU~, S., KONEg]N~', 

S. & LOKAJ, J. (1987). Collect. Czech. Chem. Commun. 52, 
692-706. 

Acta Crysr (1988). A44, 729-735 

A Priori Estimation of Scale and Overall Anisotropic Temperature Factors 
from the Patterson Origin Peak 

BY ROBERT H. BLESSING AND DAVID A. LANGS 

Medical Foundation of  Buffalo, 73 High Street, Buffalo, New York 14203, USA 

(Received 1 October 1987; accepted 26 April 1988) 

Abstract 

An idea due to D. Rogers [Computing Methods in 
Crystallography (1965), edited by J. S. Rollett, pp. 
117-148. Oxford: Pergamon Press] has been devel oped 
and implemented. The method is an advantageous 
alternative to Wilson plot or K-curve scaling of 
intensity data. On the relative experimental scale the 
structure factor can be written in matrix notation 
as F ( h ) = k - ~ j f j ( h ) e x p ( 2 7 r i h T x ~ ) e x p ( - h r b ~ h ) ;  
and the squared structure-factor magnitude can 
be written as [F(h)l 2 = k -2 exp (-2hT"bh){~jf~2+ 
2~j  ~k>j~fk exp [27rihr(xj--Xk)]}, if a common, or 
average, anisotropic temperature factor is factored 
out of the atomic summations. The f~ summation 
corresponds to the Patterson origin peak, and the fjfk 
double summation to the off-origin Patterson peaks. 
A trivariate Gaussian density function, P(u) - Pmi, = 
P0 exp ( - u r p u ) ,  is fitted by least squares to the origin 
peak from a Patterson synthesis with coefficients 

2 2 I FI meas/Ejf~" Fourier inversion of the fitted Gaussian 
gives the scale and thermal parameters, k 2= 
(detp)~/2/(Tr3/2Vce, Po) and b =  (Tr2/2)p -~. The fit of 
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the parameter Pm~n is constrained by the condition 
that Pmin = -F(O00)2/(  k2 Vcen ~j Z2), and thus only P0 
and the six coefficients Pu (i < j  = 1, 2, 3) are indepen- 
dent parameters. 

Background 

One of the first steps in an X-ray crystal structure 
analysis is the estimation of the scale and overall 
temperature factor for the diffraction intensities. Over 
the years, several methods for doing this have been 
devised (Rogers, 1965, 1980; Levy, Thiessen & Brown, 
1970; Ladd, 1978; Giacovazzo, 1980; Subramanian 
& Hall, 1982; Hall & Subramanian, 1982). 

The Wilson plot 

The widely employed method of Wilson (1942) 
takes advantage of the cosine form of the product of 
the structure factor with its complex conjugate 
(Patterson, 1935). In matrix notation, 

F ( h ) = ~ f j ( s ) e x p ( - B j s 2 ) e x p ( 2 7 r i h T x j ) ,  (1) 
;t 
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where s = (sin 0)/A a n d j  = 1, 2 , . . . ,  n atoms per unit 
cell, and 

IF(h)l == ET] exp (-2njs =) 
J 
+2)-'. Y. £fk exp[--(Bj+ Bk)S 2] 

j k>j 

x cos [27rhT(xj - Xk)]. (2) 

The form of (1) and (2) assumes that the atomic 
thermal vibrational  displacements are isotropic. If it 
is further assumed that the individual atomic thermal 
parameters  Bj can be fairly approximated  by a com- 
mon or average B, and if the scale factor k for the 
relative measurements  of  [F(h)l 2 is explicitly noted,  
then (2) becomes 

k IFIm~as = exp ( - 2 B s  2) f2 + 2 2 ~ fjfk 
j k>j 

x cos [27rhr(xj --Xk)]} • 

If  this is averaged in shells of s, the sum in cosine 
terms goes to zero, and one obtains 

(IF'2eas/ e ~ f21s "- k-2 exp (-2B(s2)), 

ln(lFl2eas/e~j f]),  =-2lnk-2B(s2),  

which provides estimates of k and B from the inter- 
cept and slope of a plot of the logarithms of  the 
shell-averaged normalized intensities against the 
averaged (sin 0) 2 . 

The quanti ty  e = e(h) in (3) is a projection sym- 
metry multiplier* that is introduced to account  for 
the enhanced average intensity in certain zones and 
rows due to superposi t ion of symmetry-equivalent  
atoms in projection. For general reflections e = 1, and 
for special reflections e = 2, 3, 4, 6, 8, or 12 (Iwasaki 
& Ito, 1977). For example,  e = 2  for hOl and 0k0 
reflections in the monocl inic  point group 2/m.  

The K curve 
Karle & Haup tman  (1953) devised a composite  

scale and temperature  factor function, 

K(s)=(ey.fE(s)/ 2 / -'~-'k2 IFI . . . .  exp (2B(s2)), 
j s 

for estimating normalized structure factor ampli- 
tudes, IE(h)[ [IF(h)[ 2 -- m e a s / K ( s ) ]  1/2. The e x t r a p o -  

l a t e d  value of  K at s = 0 gives the scale factor, but 
no explicit evaluation of  the temperature  factor is 
needed to estimate the I EI values. 

* Rogers (1965, p. 129; 1980) uses the symbol p and the Welsh 
word pwys (plural pwysau) meaning power, strength, weight, or 
importance. 

Anisotropic extension of the Wilson plot 
Maslen (1967) devised an approximate  method to 

allow for thermal anisotropy by means of  a second 
series of Wilson plots against the Miller index prod- 
ucts h 2, k 2, 12, hk, kl, hi following a scaling of the 
intensities from a first Wilson plot against s 2. 

Least-squares refinement method 
Very recently, Sheriff & Hendrickson (1987) pub- 

lished a straightforward method for estimating the 
scale and overall anisotropic thermal parameters.  In 
effect, they use 

F~a,c(h) = k -2 exp ( - 2 h  Tbh) ~ f ) ( s )  
J 

for a least-squares minimizat ion of 

x : = Z  (IFI ~ F~a,c)2/o'2(IFI2 meas) meas 
h 

by fitting k and b ~j (i<j = 1, 2, 3) for a 'composi te  
a tom'  at x = (0, 0, 0) with 'a tomic scattering factor '  
Y.j f~(s). The authors report  significant improvements  
in the refinement of macromolecular  structure models 
when the overall thermal anisotropy is introduced.  
Essentially the same method was reported by Levy, 
Thiessen & Brown (1970), who were faced with the 
problem of estimating IEI values for a structure for 
which the thermal at tenuat ion of the diffraction 
intensities was severely anisotropic.* 

Rogers analysis 
Rogers (1965) emphasized the correspondence 

between the terms in the expression for the squared 
structure-factor magni tude and the peaks in the 
Patterson function. Allowing for Gaussian distri- 
butions of  atomic thermal vibrational displacements  
(Johnson & Levy, 1974), we obtain 

F(h)  = ~ fj (h) exp (27rih rxj - h  Tbjh), (4) 
J 

and, if 

gj(h) =f j (h)  exp ( - h r b j h ) ,  

]F(h) 2=~g~+2~ ~ gjgk exp[27rihT(xj--Xk)]. 
j j k>j 

If this is substi tuted into the Patterson function,  

P ( u ) =  v- '  E IF(h)l ~ exp ( -27r ih ru ) ,  
h 

* The work of Levy, Thiessen & Brown (1970) was called to our 
attention by one of the referees, who reports that the method was 
adopted in his laboratory and has been in routine use there for 
about 15 years with excellent results. 
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one obtains 

P ( u ) =  V-l~h(~g2)  exp(--2"n'ihru) 

+ V - I ~  { 2 2  2 g~gk 
j k>j  

× exp [27rihT(xj --Xk -- n)]}.  

The terms in g2 give the contribution of IF(h)l 2 to the 
Patterson origin peak, and the gjgk terms give the 
contribution to the off-origin Patterson peaks. Fourier 
inversion of the origin peak, 

gives the expectation of the squared structure-factor 
magnitude, 

(lf(h)l~) =Z g2(h) = V I Po(u)exp (2"rrihTu) d3u .  
j v 

Implementation of the Rogers analysis 

We have written a program to compute a sharpened 
Patterson density, 

1 P(u) = V-~ll ~co IF(h)12 h 2 f ] (h )  exp (--27rihTu); (5) 
- -co  j 

fit a trivariate Gaussian density function, 

Po(u) = Po exp ( - u  Tpu), (6) 

around u = 0; and calculate the Fourier inverse of this 
origin peak, 

+ c o  

([F(h)12\--V~,,  f P°(u) exp(2"rrihru)d3u" 
2 / 2 ( h ) /  
j - - co  

The form of P(u) given in (5) is not the same as an 
]E 12 Patterson, which would have an additional factor 
k -2 exp [-2Bs2(h)] in the denominator of the sharp- 
ened coefficients. The Gaussian form of Po(u) given 
in (6) follows by analogy with (3), assuming a com- 
mon or average anisotropic thermal vibration tensor 
b, i.e., for IF(h)[ on the relative experimental scale, 

[F(h)12\ k-2 
~ f ~ ( h ) / =  exp (-2hTbh)" 

J 

(7) 

This is a Gaussian, and, therefore, so is its Fourier 
transform Po(u). 

In practice, the cosine forms of the Patterson func- 
tion and its inverse are used. That is, since IF(-h) l  = 

IF(h)l, 

2 +~ +co +~ IF(h)l 2 
P(u) = - ~ l  1 -co~"h _Z~k ~o/y, f](h)cos (27rhTu); 

J 

and since P ( - u )  = P(n), 

([F(h)12/y. f2(h)) 
J 

+ c o  + 0 o  + c o  

=2Vc~,, I I I Po(n) cos(2~hru) dudvdw.  
0 - c o  - c o  

If we substitute the Gaussian [(6)] for Po(u), this 
becomes 

F ( h ) ]  2 = 2 Vceil po  e x p  ( - - u T p u )  h) 
• 0 - c o  - c o  

x cos (2~rhru) du dv dw. 

The standard form 

gives 

exp ( - a2x  2) cos mx dx 
0 

= [ 7r'12/(2a)] exp [-m21 (2a) z] 

<1 F(h) l  f ] fh)> = Vce,! [Po/(det p) ~/2] 
J 

x exp (-'n'2hTp-lh), (8) 

and it follows from (7) that 

k2=(detp)l/2/(Tr3/2Vcenpo) and b=  (Tr2/2)p -1. (9) 

The Patterson density is calculated on a hemi- 
spherical polar coordinate grid around the origin 

F 2 ,9 using coefficients [ I meas/Y.jf~" The radius of the grid 
is a user-selected multiple, typically 2.5, of the half- 
height radius of the origin peak, determined as 
described below. With 25 r-divisions at 30 ° 0 and ~o 
intervals the grid contains 1+25+25  x 12 x 3 = 926 
grid points. 

The Gaussian density function must be fitted to an 
adjusted origin peak (Fig. 1), 

Po(u) - Pmin = Po exp ( -u rpu ) ,  

where 

(10) 

accounts for the omitted F(000) term in the Patter- 
son-Fourier summation. 

Starting values for Pmin, Po and the six Pu (i<-J = 
1, 2, 3) are obtained from the minimum and maximum 
values and the half-height radii of the Patterson 
densities calculated along the a, b and c axes out to 
a user-selected radius, typically 2.0/~, at intervals of 
1/50 of the radius. The chances of including off-origin 
interatomic peaks within the radius of the origin peak 
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fit (Fig. 2) are somewhat reduced by the increasing 
sparseness of the polar coordinate grid with increas- 
ing radius. To deal with peaks that are included, any 
grid points with 

P(u) - Pmin < 0"5 Po 

and 

P(u) - e m i n - P o  exp (--uTpu) > 2tr, 

where o- is the root-mean-square deviation of fit of 
the parameters Pmin, P0 and Po, are down-weighted 
to a relative weight of 0.1 in the iterative least-squares 
refinement of the parameters. In this way, a minimum- 
profile origin peak fit is obtained (Rogers, 1965, 
p. 144), as indicated in Fig. 2. The fit of the parameter 
Pmin is constrained by (10). 

Test  c a l c u l a t i o n s  

We have tested our program against a number of 
structures recently studied in our institute. The struc- 
tures, space groups and unit-cell contents are listed 
in Table 1. The overall thermal vibration tensors in 
the form of mean-square displacement parameters, 

U V = biJ / (2rr2a*'a*J) ,  

are listed in Table 2, and the scale factors and thermal 
parameters contracted to equivalent isotropic scalars, 

Uiso = ( 1/6rr 2) Y. Y. a , .  ajb ° , 
i j 

Uis o -- ( u2)iso = B i s o / ( 8  "tr2), 

are listed in Table 3, along with the normalized root- 
mean-square deviation of fit for the anisotropic 
Gaussian origin peak. 

All the data sets of Tables 1-3, except the mono- 
clinic DE-biotin and the insulin data, were subjected 
to either a Wilson plot or K-curve scaling at the start 
of the structure analyses so that, ideally, the refined 
scale factors should be unity. When the CAB520, 

PCu) 

Pm~x 

1.177 (3- 

o 

Pm~ 

Fig. 1. Schematic illustration of a Patterson origin peak showing 
the half-height peak radius and the Pmi. value corresponding 
to equation (10). At P = (Pmi,+ Pm~)/2, U = 1"177~r, where t72 
is the variance of a Gaussian peak function centered at u = 0, 
P(u) = Pmi,+ (Pm~- Pmi,) exp (-u2/2o'2). 

tetrahymanol, and pressinoic acid data were first 
scaled, the structures were not known to contain 
solvent of crystallization, so it is reasonable that their 
scale factors should refine to smaller values. Table 3 
shows that in most cases the Rogers method gave 
better estimates of the scale factors than did the 
routinely applied customary methods. Presumably 
this is because the fit to the Patterson origin peak 
achieves a separation or smoothing of the non- 
random interatomic vectors (Rogers, 1965, pp. 140- 
148; 1980, pp. 83-85) that is equivalent to the effect 
of the Debye radial distribution curve as employed 
by Main (1976) to utilize known molecular structure 
information in the scaling process. 

The triple entries in Tables 2 and 3 give, first, the 
a priori estimate from the Rogers analysis, then two 
differently weighted averages over the unit cell of the 
a posteriori  atomic thermal parameters from the con- 
verged least-squares structure refinements. The 
second entry is weighted by the atomic masses, which 
seem reasonable for estimation of overall mean- 
square vibrational displacements. The third entry is 
weighted by the squared atomic numbers, which 
reflect the atomic scattering cross sections for X-rays. 
The results indicate that there is little to choose 
between the two kinds of averaging. 

Table 2 shows that the Rogers method does quite 
well at getting the relative anisotropy of the overall 
thermal parameters about right. With the exception 
of the CAB610 structure, which turned out to have 
rotationally disordered trifluoromethyl groups, the 
agreement between the a priori and a posteriori  
anisotropic thermal parameters is best for the calcium 
channel blocker structures and the urea-phosphoric  
acid structure. These have smaller mole fractions of 
hydrogen than the other structures, and it appears 
that the equivalent anisotropic components of the 
refined isotropic thermal parameters for the hydrogen 
atoms noticeably bias the thermal-parameter 
averages. This effect is compounded in the cases of 
pressinoic acid and the valinomycin analogs, for 
which hydrogen atoms were included in the structure 
models at fixed calculated positions with fixed esti- 
mated thermal parameters, and for which anisotropic 

[PCu)- P ,ol / c Pro,o) 

1 

\ 

0.5 

O ~U 

Fig. 2. Schematic illustration of the superposition of a Patterson 
origin peak and an off-origin interatomic peak. 
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Table 1. Test data sets 

Space  g roup  

Urea-phosphoric acid Pbca 
DL-Biotin structures 

monoclinic P21/n 
triclinic P1 

Calcium channel blockers 
CAB611 C2/c 
CAB610 P2t/c 
CAB520 P2/c 
CAB438 P2t212 l 

Tetrahymanol P21 
Pressinoic acid p21 
Valinomycin analogs 

ILED P21222 I 
F4 P21212 t 

Insulins 
'4-zinc' porcine insulin 

drain = 1.50/~ R3 
'4-zinc' human insulin 

drain = 1 "85/~, R3 
monoelinie human insulin 

drain = 2"25 A p2 t 

Uni t  cell contents  

8CH7N2OsP 

4CI3H22N203S 
2C13 H22N203S.0"5C6H 12 

8CIsHI4N307 
4Ct6HtsF3N204 
8CI7H ITCIFNOn.0"25C6H 12 
4CIgH2oN206 
4C3oH520.0"5H20 
2C33H42NsOIoS2.4"5H20 

4C6oHIo2N6OIs 
4C6oHIo2N6Ots 

9C512H762Clo.22N13oOI52SI2Zno.ss.~339H20 

9C514H766Ci0-22 N 130 ° 154 s 12Zno -as.( 196 + ~ 143) H20 

2CI542H2298N3900462S36Zn2.~ 1434H20 

Table 2. Overall anisotropic temperature factor coefficients ( A, 2) 
F(h) = Fo(h) exp (-2~ -2 ~'.i ~j hihja*ia*JUiJ). 

The three va lues  given are respec t ive ly  the Rogers  es t imate ,  a tomic -mass -we igh ted  average  o f  s t ructure  ref ined values ,  and  squa red -a tomic -  
number -we igh t ed  average  o f  s t ructure  refined values.  

Un U22 U33 U12 Ul3 U23 
Urea.H3PO4 0.026 0.028 0.022 0 0 0 

0.031 0.035 0.026 0 0 0 
0.028 0.032 0.024 0 0 0 

Mon.DL-B 0.069 0.058 0.060 0 0.010 0 
0.057 0.045 0.048 0 0.012 0 
0.058 0.045 0.049 0 0.011 0 

Tri.DL-B 0.071 0.076 0.053 0-021 -0.0037 0.0009 
0.063 0-065 0.055 0.008 0.0002 0.0037 
0.060 0.064 0.051 0-010 0.0001 0-0016 

CAB611 0.071 0.084 0-093 0 0.018 0 
0-073 0.085 0-092 0 0.016 0 
0.075 0.088 0.093 0 0.017 0 

CAB610 0.086 0.057 0.049 0 0.016 0 
0.116 0.090 0.080 0 0.009 0 
0.123 0.094 0.085 0 0.006 0 

CAB520 0.080 0.074 0.091 0 0.036 0 
0.077 0.073 0.085 0 0.034 0 
0.078 0.073 0.086 0 0.035 0 

CAB438 0.056 0.071 0.043 0 0 0 
0.059 0.070 0.045 0 0 0 
0.060 0.072 0.044 0 0 0 

Thym. 0.052 0.062 0.049 0 -0.008 0 
0.046 0.055 0.040 0 -0.0006 0 
0.045 0.054 0.038 0 -0.002 0 

Press. 0.068 0.063 0.093 0 0.025 0 
0.052 0.042 0.072 0 0.021 0 
0.053 0.042 0.074 0 0.023 0 

VaI.ILED 0.079 0.084 0.084 0 0 0 
0.088 0.092 0.092 0 0 0 
0.088 0.090 0.091 0 0 0 

VaI.F4 0.125 0.124 0.145 0 0 0 
0.150 0.149 0.161 0 0 0 
0.143 0.144 0.157 0 0 0 

4Zn-P.Ins. 0.29 0.29 0-35 0.14 0 0 
4Zn-H.lns. 0.38 0.38 0.53 0.19 0 0 
Mon.H.Ins. 0.58 0.53 0.60 0 0.26 0 

thermal parameters could not be fitted for disordered 
water molecules of crystallization or disordered side- 
chain carbon atoms. 

For the CAB610 structure, with the disordered tri- 
fluoromethyl groups, the Patterson origin peak gave 

scale and thermal parameters that were apparently 
biased towards the ordered part of the structure. This 
suggests that for a heavy-atom structure, such as an 
organometallic compound, the results would be 
biased towards the heavy atom to the extent that it 
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Table 3. Scale factors, equivalent isotropic mean- 
square displacements ( ~2) and agreement-of-fit indices 

for the anisotropic Gaussian peaks 

R = {E w[P(u)-  Po(u)]2/E wP(u)2} '/2. 

Values are listed in the order  Rogers es t imate/a tomic-mass-  
weighted average of  structure refined va lues /squared-a tomic-  
number-weighted average of  structure refined values. 

k % error* (u2)iso R 

Urea. H3PO4 I. 11 - l 0.0252 0.020 
1.12 - 11 0.0304 

0.0280 
Mon.DL-B 4.51 -12 0.0625 0.018 

5.14 0.0503 
0.0508 

Tri.DL-B 1.49 - 13 0.0664 0.026 
1.73 -42 0.0609 

0.0585 
CAB611 0.996 -9  0-0825 0"031 

1.090 -8  0.0834 
0-0852 

CAB610 0-945 13 0-0639 0.026 
0.837 19 0.0955 

0-1010 
CAB520 0-933 -6  0.0819 0.015 

0-990 1 0.0784 
0.0789 

CAB438 0.773 -5 0.0567 0.031 
0.816 23 0.0583 

0.0587 
Thym. 0-835 8 0.0544 0.042 

0.912 10 0.0472 
0.0457 

Press. 0-733 -21 0-0744 0.028 
0-931 7 0.0556 

0.0564 
VaI.ILED 0.895 -0.1 0.0825 0.012 

0-896 12 0.0905 
0.0895 

VaI.F4 0.757 -7  0-132 0.031 
0-811 23 0-153 

0.148 
4Zn-P. Ins. 1.30 0.308 0.008 
4Zn-H.Ins. 0-370 12 0.434 0.014 

0.331 0.422 
Mon.H.Ins. 0.207 93 0.56 0.012 

0.107 0.35 

* The first value listed under '% error' for each entry is the percentage 
difference between the Rogers estimate of the scale factor and the structure 
refined value, and the second value is the percentage difference between 
unity and the structure-refined value. 

dominates the scattering. The estimates would also 
be biased by uncorrected anisotropic absorption in 
strongly absorbing crystals. 

Anisotropic thermal parameters are not yet avail- 
able from the refinements of the insulin structures 
listed in the tables, but according to the experience 
of Sheriff & Hendrickson (1987), the introduction of 
thermal anisotropy estimates from Table 2 should 
improve the insulin structure models considerably. 
The overall thermal parameters for the insulin crystals 
(Tables 2 and 3) parallel the data-set resolution (Table 
1), which, in turn, parallels the attenuation of the 
higher-angle X-ray scattering by the thermal motion 
and disorder in the crystals. The differences between 
the estimated and refined scale factors for the human 

insulin crystals (Table 3) reflect approximately the 
proportion of disordered side-chain and solvent 
structure not yet included in the structure models. 
When the very-low-angle data with (sin 0 ) / A <  

~-~ 0.0625 (d > 8 A) were omitted from the Patter- 
son-Fourier summation, and the water of crystalliz- 
ation was omitted from Yuf~, the Rogers estimates 
for the monoclinic human insulin data were much 
closer to the refined values for the partial structure 
model. We have also seen that, not surprisingly, the 
analysis of the Patterson origin peak is unreliable 
when only a partial low-resolution data set is avail- 
able. The data should extend to the scattering-angle 
radius at which the scattered intensity becomes 
experimentally insignificant owing to the thermal 
motion or disorder. 

For all the examples listed in the tables, the 
Gaussian peak was fitted out to a radius of 2.5 half- 
height radii, with the points outside one half-height 
radius weighted as described above. The radius of fit 
was less than 1.25 A for all but the Val.F4 and insulin 
crystals, for which the radii were 1.5, 2.4, 3.0, and 
3.1 A, respectively. In these latter cases, off-origin 
interatomic C-C, C-N and C-O peaks certainly fell 
within the radius of fit, and to a greater or lesser 
extent, depending on the effectiveness of the weight- 
ing, biased the results. The general effect should be 
to broaden and shorten the fitted Gaussian peak. This, 
in turn, would give an inverse Gaussian too narrow 
and tall, and would bias both the thermal parameters 
and the scale factor to values that are too large [see 
e.g. (7)]. To test for significant bias, the calculations 
for the Val.F4 and insulin data sets were repeated, 
restricting the radius of fit to one half-height radius. 
The results changed by at most a few percent, indicat- 
ing that our simple scheme to down-weight the off- 
origin peaks works surprisingly well. 

Two applications that we had in mind at the start 
of this work still remain to be pursued. The 
anisotropic Rogers expectation values for IFI 2 can be 
used to advantage in the Bayesian processing of weak 
high-angle diffraction data (French & Wilson, 1978), 
and in the estimation of experimental IEI values for 
direct methods of structure determination. The overall 
anisotropic thermal parameters also provide the basis 
for an anisotropic thermal diffuse scattering correc- 
tion that would not require that the elastic constants 
of the crystal be known (Blessing, 1987). 

A listing of our Fortran program (-1000 lines of 
code) has been deposited as supplementary publica- 
tion material.* A machine-readable copy of the pro- 
gram is available from the authors on request. 

* This listing has been deposited with the British Library Docu-  
ment Supply Centre as Supplementary  Publication No. SUP44936 
(36 pp.). Copies  may be obtained through The Executive Secretary, 
International  Union  of  Crystal lography,  5 Abbey Square, Chester 
CH1 2HU, England.  
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Abstract Ge4(Ge6 ) Groupe d'espace ~ quatre ou six 
couleurs, isomorphe de Ge. A direct algebraic method is discussed which enume- 

rates subgroups of index four and six of three- 
dimensional space groups, and the four- and six- 
coloured space groups. There are three types of 
four-coloured space groups, since the lattice can be 
one-, two- or four-coloured, and four types of six- 
coloured space groups, since the lattice can be one-, 
two-, three- or six-coloured. 

Notations 

G 
H 
04(06) 

G~ 
T 
r4(r6) 

T~ 

Groupe ponctuel ordinaire. 
Sous-groupe invariant de G. 
Groupe ponctuel ~ quatre (six) couleurs, 
isomorphe de G. 
Groupe d'espace ordinaire, de classe G. 
R6seau de Ge. 
R6seau ~ quatre ,(six) couleurs, 
isomorphe de T. 
R6seau des translations monocolores de 
T 4 o u  T 6. 
Sous-groupe invariant de Ge, d'indice 4 
ou 6. 

0108-7673/88/050735-06503.00 

Introduction 

Les groupes d'espace ~ deux couleurs, ou groupes 
magn6tiques, et ~ trois couleurs sont bien connus 
(Opechowski & Guccione, 1965; Harker, 1981). Les 
groupes d'espace ~ quatre et six couleurs ont 6t6 
moins &udi6s (Jarratt & Schwarzenberger, 1980; 
S6n6chal, 1983; Roth, 1985). Un cas particulier int6r- 
essant est celui off les permutations des quatre ou six 
couleurs associ6es aux op6rations g6om6triques sont 
cycliques: les groupes ponctuels color6s correspon- 
dants ont 6t6 6num6r6s ~ partir des repr6sentations 
cycliques des groupes ponctuels ordinaires (Inden- 
bom, Belov & Neronova, 1960; Niggli & Wondrat- 
schek, 1960); les r6seaux color6s ont 6t6 6num6r6s 
par Zamorzaev (1969); la m6thode des repr6senta- 
tions cycliques a 6t6 6tendue aux groupes d'espace 
(Koptsik & Kuzhukeev, 1973). 

Nous discutons dans cet article une m6thode alg6- 
brique directe de recherche des groupes d'espace 
quatre et six couleurs, 6quivalente ~ la m&hode des 
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